import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as stTypes
2 + 24
s = "hello, world"x = 2
type(x)int
type(s)str
y = 2.2
type(y)float
b = True
type(b)bool
type(None)NoneType
c = 'c'
type(c)str
s = 2
type(s)int
Data Structures
l = [1, 2.2, "edward", True] # list
l[1, 2.2, 'edward', True]
l.append(5)
l[1, 2.2, 'edward', True, 5]
l[4]5
d = {"key": 1, 1: "value", (1, 2): "wow"} # dictionary or dict
d[(1,2)]'wow'
d["key"]1
d["math314"] = "is cool"
d{'key': 1, 1: 'value', (1, 2): 'wow', 'math314': 'is cool'}
t = (1, 2, 3.4)
t(1, 2, 3.4)
Control Flow
if True:
print("yay")
else:
print("nay")yay
if l:
print("what")what
if ():
print("ah I get it")for i in range(len(l)):
print(i, l[i])0 1
1 2.2
2 edward
3 True
4 5
d.keys()dict_keys(['key', 1, (1, 2), 'math314'])
d.values()dict_values([1, 'value', 'wow', 'is cool'])
d.items()dict_items([('key', 1), (1, 'value'), ((1, 2), 'wow'), ('math314', 'is cool')])
for k, v in d.items():
print(k, v)key 1
1 value
(1, 2) wow
math314 is cool
c = 0
while True:
print(c)
if c > 10:
break
c += 10
1
2
3
4
5
6
7
8
9
10
11
c *= 2
c /= 1.5
c **= 3
c3154.9629629629626
x = 2
x **= 2
x4
if False:
print("a")
elif True:
print("b")
else:
print("c")b
Functions
def f(h, j = 5, k = 6):
return h + j
f(1, j = 8)9
f(1)6
f(1, k = 2, j = 3)4
f(2)7
Class
class Table():
def __init__(self, num_legs = 4):
self.legs = num_legs
def num_legs(self):
return self.legst = Table()
x = t.num_legs()s = Table(num_legs = 7)
s.num_legs()7
Numpy
np.exp(((np.zeros(3) + 3) * 2 ) / 6)array([2.71828183, 2.71828183, 2.71828183])
rng = np.random.default_rng(seed = 789427834294)
x = rng.normal(size = 10)np.mean(x)0.05685974974670359
np.std(x)1.0161486486393296
X = rng.normal(size = (3, 5))
np.mean(X, axis = 1)array([ 0.10255819, -0.85520091, -0.56674674])
np.std(X, axis = 1)array([0.41042252, 0.72211726, 0.57281818])