import scipy.stats as st
import numpy as np
import matplotlib.pyplot as plt
# 1
= st.norm(loc = 50_000, scale = 2_000)
Normal 48_000) # cumulative distribution function <=
Normal.cdf(1 - .9) Normal.ppf(
47436.8968689108
# 2
= st.norm(loc = 10, scale = 2)
Normal 12) - Normal.cdf(8)# a
Normal.cdf(1 - Normal.cdf(14)
0.02275013194817921
= st.norm()
N = np.linspace(-5, 5, 101)
x = N.pdf(x)
fx plt.plot(x, fx)
= plt.figure()
fig = fig.add_subplot(111, projection="3d")
ax = np.meshgrid(x, x)
X, Y = np.dstack((X, Y))
XY = st.multivariate_normal(np.zeros(2), np.diag(np.ones(2)))
MvN = MvN.pdf(XY)
Z ax.plot_surface(X, Y, Z)
1, 4]) MvN.pdf(XY[
np.float64(2.473314011763375e-11)
1, 4] XY[
array([-4.6, -4.9])
-4.6) * N.pdf(-4.9) N.pdf(
np.float64(2.4733140117633728e-11)