MATH 314 Quiz 05

E[X]=xSxf(x)\mathbb{E}[X] = \sum_{x \in S} x \cdot f(x)

  1. Suppose XBernoulli(p=0.25)X \sim \text{Bernoulli}(p = 0.25), with density function f(x)=px(1p)(1x)f(x) = p^x(1 - p)^{(1 - x)} where S={0,1}S = \{0, 1\}. Calculate E[X]\mathbb{E}[X].
  2. Suppose XFX \sim \text{F}, with density function f(x)f(x) where S={1,2,3}S = \{1, 2, 3\} and f(1)=0.2,f(2)=0.5,f(3)=0.3f(1) = 0.2, f(2) = 0.5, f(3) = 0.3. Calculate E[X]\mathbb{E}[X].